FAQ : SQL

1. What are the difference between a function and a stored procedure?
1. Functions can be used in a select statement where as procedures cannot

2. Procedure takes both input and output parameters but Functions takes only input parameters

3. Functions cannot return values of type text, ntext, image & timestamps where as procedures can

4. Functions can be used as user defined datatypes in create table but procedures cannot
***Eg:-create table <tablename>(name varchar(10),salary getsal(name))
Here getsal is a user defined function which returns a salary type, when table is created no storage is allotted for salary type, and getsal function is also not executed, But when we are fetching some values from this table, getsal function get’s executed and the return
Type is returned as the result set.

1. What is normalization? Explain different levels of normalization? Explain Third normalization form with an example?
The process of refining tables, keys, columns, and relationships to create an efficient database is called normalization. This should eliminates unnecessary duplication and provides a rapid search path to all necessary information.
Some of the benefits of normalization are:

· Data integrity (because there is no redundant, neglected data)

· Optimized queries (because normalized tables produce rapid, efficient joins)

· Faster index creation and sorting (because the tables have fewer columns)

· Faster UPDATE performance (because there are fewer indexes per table)

· Improved concurrency resolution (because table locks will affect less data)

· Eliminate redundancy

There are a few rules for database normalization. Each rule is called a "normal form." If the first rule is observed, the database is said to be in "first normal form." If the first three rules are observed, the database is considered to be in "third normal form." Although other levels of normalization are possible, third normal form is considered the highest level necessary for most applications.

7. First Normal Form (1NF)

7. Eliminate repeating groups in individual tables

7. Create a separate table for each set of related data.

7. Identify each set of related data with a primary key.

Do not use multiple fields in a single table to store similar data.
Example

	
	Subordinate1
	Subordinate2
	Subordinate3
	Subordinate4

	Bob
	Jim
	Mary
	Beth
	

	Mary
	Mike
	Jason
	Carol
	Mark

	Jim
	Alan
	
	
	

Eliminate duplicative columns from the same table. Clearly, the Subordinate1-Subordinate4 columns are duplicative. What happens when we need to add or remove a subordinate?

	
	Subordinates

	Bob
	Jim, Mary, Beth

	Mary
	Mike, Jason, Carol, Mark

	Jim
	Alan

This solution is closer, but it also falls short of the mark. The subordinates column is still duplicative and non-atomic. What happens when we need to add or remove a subordinate? We need to read and write the entire contents of the table. That’s not a big deal in this situation, but what if one manager had one hundred employees? Also, it complicates the process of selecting data from the database in future queries.
Solution:

	
	Subordinate

	Bob
	Jim

	Bob
	Mary

	Bob
	Beth

	Mary
	Mike

	Mary
	Jason

	Mary
	Carol

	Mary
	Mark

	Jim
	Alan

8. Second Normal Form (2NF)

8. Create separate tables for sets of values that apply to multiple records.

8. Relate these tables with a foreign key.

Records should not depend on anything other than a table's primary key (a compound key, if necessary).
For example, consider a customer's address in an accounting system. The address is needed by the Customers table, but also by the Orders, Shipping, Invoices, Accounts Receivable, and Collections tables. Instead of storing the customer's address as a separate entry in each of these tables, store it in one place, either in the Customers table or in a separate Addresses table.

9. Third Normal Form (3NF)

9. Eliminate fields that do not depend on the key.

Values in a record that are not part of that record's key do not belong in the table. In general, any time the contents of a group of fields may apply to more than a single record in the table, consider placing those fields in a separate table.
For example, in an Employee Recruitment table, a candidate's university name and address may be included. But you need a complete list of universities for group mailings. If university information is stored in the Candidates table, there is no way to list universities with no current candidates. Create a separate Universities table and link it to the Candidates table with a university code key.
Another Example :

	MemberId
	Name
	Company
	CompanyLoc

	1
	John Smith
	ABC
	Alabama

	2
	Dave Jones
	MCI
	Florida

The Member table satisfies first normal form - it contains no repeating groups. It satisfies second normal form - since it doesn't have a multivalued key. But the key is MemberID, and the company name and location describe only a company, not a member. To achieve third normal form, they must be moved into a separate table. Since they describe a company, CompanyCode becomes the key of the new "Company" table.

The motivation for this is the same for second normal form: we want to avoid update and delete anomalies. For example, suppose no members from the IBM were currently stored in the database. With the previous design, there would be no record of its existence, even though 20 past members were from IBM!
Member Table
	MemberId
	Name
	CID

	1
	John Smith
	1

	2
	Dave Jones
	2

Company Table
	CId
	Name
	Location

	1
	ABC
	Alabama

	2
	MCI
	Florida

10. Boyce-Codd Normal Form (BCNF)
A relation is in Boyce/Codd normal form if and only if the only determinants are candidate key. Its a different version of 3NF, indeed, was meant to replace it. [A determinant is any attribute on which some other attribute is (fully) functionally dependent.]

11. 4th Normal Form (4NF)
A table is in 4NF if it is in BCNF and if it has no multi-valued dependencies. This applies primarily to key-only associative tables, and appears as a ternary relationship, but has incorrectly merged 2 distinct, independent relationships.
Eg: This could be any 2 M:M relationships from a single entity. For instance, a member could know many software tools, and a software tool may be used by many members. Also, a member could have recommended many books, and a book could be recommended by many members.

	Software
	

	member
	

	Book

12. The correct solution, to cause the model to be in 4th normal form, is to ensure that all M:M relationships are resolved independently if they are indeed independent.

	Software
	

	membersoftware
	

	member
	

	memberBook
	

	book

13. 5th Normal Form (5NF)(PJNF)
A table is in 5NF, also called "Projection-Join Normal Form", if it is in 4NF and if every join dependency in the table is a consequence of the candidate keys of the table.

14. Domain/key normal form (DKNF). A key uniquely identifies each row in a table. A domain is the set of permissible values for an attribute. By enforcing key and domain restrictions, the database is assured of being freed from modification anomalies. DKNF is the normalization level that most designers aim to achieve.

